25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression

نویسندگان

  • Zaki K Hassan-Smith
  • Carl Jenkinson
  • David J Smith
  • Ivan Hernandez
  • Stuart A Morgan
  • Nicola J Crabtree
  • Neil J Gittoes
  • Brian G Keevil
  • Paul M Stewart
  • Martin Hewison
چکیده

Age-associated decline in muscle function represents a significant public health burden. Vitamin D-deficiency is also prevalent in aging subjects, and has been linked to loss of muscle mass and strength (sarcopenia), but the precise role of specific vitamin D metabolites in determining muscle phenotype and function is still unclear. To address this we quantified serum concentrations of multiple vitamin D metabolites, and assessed the impact of these metabolites on body composition/muscle function parameters, and muscle biopsy gene expression in a retrospective study of a cohort of healthy volunteers. Active serum 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3), but not inactive 25-hydroxyvitamin D3 (25OHD3), correlated positively with measures of lower limb strength including power (rho = 0.42, p = 0.02), velocity (Vmax, rho = 0.40, p = 0.02) and jump height (rho = 0.36, p = 0.04). Lean mass correlated positively with 1α,25(OH)2D3 (rho = 0.47, p = 0.02), in women. Serum 25OHD3 and inactive 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) had an inverse relationship with body fat (rho = -0.30, p = 0.02 and rho = -0.33, p = 0.01, respectively). Serum 25OHD3 and 24,25(OH)2D3 were also correlated with urinary steroid metabolites, suggesting a link with glucocorticoid metabolism. PCR array analysis of 92 muscle genes identified vitamin D receptor (VDR) mRNA in all muscle biopsies, with this expression being negatively correlated with serum 25OHD3, and Vmax, and positively correlated with fat mass. Of the other 91 muscle genes analysed by PCR array, 24 were positively correlated with 25OHD3, but only 4 were correlated with active 1α,25(OH)2D3. These data show that although 25OHD3 has potent actions on muscle gene expression, the circulating concentrations of this metabolite are more closely linked to body fat mass, suggesting that 25OHD3 can influence muscle function via indirect effects on adipose tissue. By contrast, serum 1α,25(OH)2D3 has limited effects on muscle gene expression, but is associated with increased muscle strength and lean mass in women. These pleiotropic effects of the vitamin D 'metabolome' on muscle function indicate that future supplementation studies should not be restricted to conventional analysis of the major circulating form of vitamin D, 25OHD3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary Human Osteoblasts in Response to 25-Hydroxyvitamin D3, 1,25-Dihydroxyvitamin D3 and 24R,25-Dihydroxyvitamin D3

The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not o...

متن کامل

Britain Stimulation of 1 , 25 - dihydroxyvitamin D 3 production by 1 , 25 - dihydroxyvitamin D 3 in the hypocalcaemic rat

Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 a-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with incr...

متن کامل

The 24-hydroxylation of 1,25-dihydroxyvitamin D3.

The production of 1,24,25-trihydroxyvitamin D3 in vivo in vitamin D-deficient rats has been demonstrated from either 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3. The stereochemical configuration of the hydroxyl on the 24 position of 1,24,25-trihydroxyvitamin D3 has also been unambiguously established to be R. Nephrectomy failed to eliminate the conversion of 1,25-dihydroxyvitamin D3 to the...

متن کامل

1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells.

Although skeletal muscle is a major calcium-regulated organ, there remains uncertainty about whether muscle is a target organ for the action of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. In this study we examine pure populations of clonally derived human muscle cells for the presence of 1,25-(OH)2D3 receptors and direct responses to the hormone. All of the clones tested exhibited specific [3H]1,2...

متن کامل

Regulation of 25-hydroxyvitamin D3-1 -hydroxylase and production of 1 ,25-dihydroxyvitamin D3 by human dendritic cells

25-Hydroxyvitamin D3-1 -hydroxylase (25(OH)D3-1 -hydroxylase), the key enzyme of 1 ,25-dihydroxyvitamin D3 (1,25(OH)2D3) production, is expressed in monocyte-derived macrophages (MACs). Here we show for the first time constitutive expression of 25(OH)D3-1 -hydroxylase in monocyte-derived dendritic cells (DCs), which was increased after stimulation with lipopolysaccharide (LPS). Accordingly, DCs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017